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Abstract
In a polyphenic species, differences in resource use are expected among ecotypes, 
and homogeneity in resource use is expected within an ecotype. Yet, using a broad 
resource spectrum has been identified as a strategy for fishes living in unproductive 
northern environments, where food is patchily distributed and ephemeral. We inves-
tigated whether specialization of trophic resources by individuals occurred within 
the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflec-
tive of a form of diversity. Four distinct dietary patterns of resource use within this 
lake trout ecotype were detected from fatty acid composition, with some variation 
linked to spatial patterns within Great Bear Lake. Feeding habits of different groups 
within the ecotype were not associated with detectable morphological or genetic 
differentiation, suggesting that behavioral plasticity caused the trophic differences. 
A low level of genetic differentiation was detected between exceptionally large-sized 
individuals and other piscivore individuals. We demonstrated that individual trophic 
specialization can occur within an ecotype inhabiting a geologically young system 
(8,000–10,000 yr BP), a lake that sustains high levels of phenotypic diversity of lake 
trout overall. The characterization of niche use among individuals, as done in this 
study, is necessary to understand the role that individual variation can play at the 
beginning of differentiation processes.
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1  | INTRODUC TION

Phenotypic diversity within fish species that have colonized post-
glacial lakes often represents early stages of species diversification 
(Snorrason & Skúlason,  2004). Many fishes that have colonized 
postglacial freshwater systems are assumed to have been plas-
tic generalists (i.e., flexible in use of habitat and food resources) 
at the time of colonization (Skúlason et  al.,  2019; Snorrason & 
Skúlason, 2004). Given the novel environment and new ecological 
opportunities, a newly established population may begin to display 
among-individual differences in behavior and other phenotypic 
characteristics (Skúlason et  al.,  2019). Phenotypic plasticity, the 
capacity for one genotype to produce different phenotypes in re-
sponse to environmental cues, could be a character subject to se-
lection, facilitating the process of diversification (De Jong, 2005). 
Despite uncertainties of how phenotypic plasticity promotes di-
vergence, plasticity appears to serve as an important element in 
early phases of diversification (Handelsman et al., 2013; Nonaka 
et al., 2015; Snorrason & Skúlason, 2004). Theory predicts that re-
cently colonized systems with multiple stable and predictable hab-
itats and resources would favor foraging and habitat specialization 
and increase the probability of eco-morphological diversification 
(Skúlason et al., 1999; Snorrason & Skúlason, 2004; Van Kleunen 
& Fischer, 2005).

Phenotypic plasticity in temporally and spatially variable envi-
ronments has been demonstrated repeatedly within and among 
populations (Skúlason et  al.,  2019). Whether niche expansion of a 
population is achieved by a general increase in niche widths for all 
individuals overall or by an increase of among-individual variation 
(i.e., expression of multiple individual specializations within a pop-
ulation) is a question in ecology that remains unanswered (Bolnick 
et al., 2003; Roughgarden, 1972; Svanbäck & Schluter, 2012). Several 
apparent generalist populations have been reported to be composed 
of combinations of specialized individuals using several narrow 
niches that together yield an overall wide population niche (Araújo 
et al., 2008, 2011; Bolnick et al., 2003). Postglacial lakes and co-in-
habiting species offer a wide range of characteristics that may favor 
or constrain individual specialization. Postglacial lakes are depau-
perate ecosystems with low interspecific competition (Snorrason & 
Skúlason, 2004), which provides ecological opportunities that likely 
favor niche expansion (Bolnick et al., 2010; Costa et al., 2008; Parent 
et al., 2014). Additionally, the large flexibility within postglacial colo-
nizing species, with individuals having the potential to exploit a wide 
range of resources, can facilitate the evolution of individual resource 
specialization and population divergence. Yet, northern ecosystem 
food webs are subject to strong seasonal and episodic influences of 
climate and the environment (McMeans et  al.,  2015). Accordingly, 
using a broad resource spectrum has been identified as a useful 
strategy for fishes living in Arctic environments, where food can 
be patchily distributed and ephemerally available. Understanding 
the magnitude and effect of individual specialization in species 
and trophic positions is necessary to appreciate the role that vari-
ation among individuals can play at the beginning of differentiation 

processes (Cloyed & Eason, 2016; De León et  al.,  2012; Svanbäck 
et al., 2015.

Great Bear Lake (Northwest Territories, Canada), spanning the 
Arctic Circle, provides an excellent opportunity to investigate the 
role of among-individual diet variation in diversification processes 
in postglacial lakes (Figure 1). Here, lake trout, Salvelinus namaycush, 
show a high degree of intraspecific diversity within a geologically 
young system (8,000–10,000 yr BP; Johnson, 1975; Pielou, 2008). 
Specifically, extensive sympatric divergence has occurred for this 
species with four ecotypes inhabiting the shallow-water (≤30  m) 
zone of Great Bear Lake (Figure S1; Chavarie, Harford, et al., 2016; 
Chavarie et al., 2013, 2015; Harris et al., 2015). Three of these four 
shallow-water lake trout ecotypes are described as trophic gener-
alists with differing degrees of omnivory along a weak benthic–pe-
lagic gradient (Chavarie, Harford, et al., 2016; Chavarie, Howland, 
Gallagher, et al., 2016). Despite habitat and dietary overlap, signif-
icant differences in morphological, genetic, and life-history varia-
tion have been reported (Chavarie et al., 2013; Chavarie, Howland, 
Venturelli, et al., 2016; Harris et al., 2015). The suggested resource 
use of the three ecotypes could be caused by the combination of in-
dividual specialists along a resource continuum (Chavarie, Howland, 
Gallagher, et al., 2016). In other words, although ecotype resource 
use may appear similar, individuals within an ecotype may differ in 
their resource use. One of these three generalist ecotypes (Ecotype 
2; generalist with a tendency to consume more fish than other eco-
types, referred here as the piscivorous ecotype; Figure 2) showed at 
least two different feeding strategies, benthic cannibalism and inter-
specific piscivory in the pelagic zone (Chavarie, Howland, Venturelli, 
et al., 2016).

To characterize niche use and individual variation within an eco-
type in relation to observed differentiation of feeding strategies, 
we focused this study solely on of the piscivorous lake trout eco-
type and its fatty acid profiles. Fatty acid analysis assumes that di-
etary lipids are broken down into their constituent fatty acids and 
incorporated relatively unchanged into consumer tissues (Howell 
et al., 2003; Iverson, 2009; Iverson et al., 2004), allowing spatial and 
temporal diet comparison among individuals (Duerksen et al., 2014; 
Eloranta et al., 2011; Hoffmann, 2017; Iverson, 2009; Scharnweber 
et al., 2016). Although internal regulation of fatty acids or biosyn-
thesis is possible (Chaguaceda et al., 2020; Keva et al., 2019; Ruess 
& Müller-Navarra, 2019), fatty acids have been assessed to be a ro-
bust tool to characterize lake trout diets (Happel et al., 2016, 2017). 
Thus, fatty acids were used as trophic bio-indicators to better un-
derstand dietary patterns of piscivorous lake trout and investigate 
whether variation occurred among individuals in this ecotype and if 
individual specialization may be contributing to trophic patterns of 
this ecotype. Specifically, our aims were to (a) compare resource use 
among lake trout individuals within Ecotype 2 (piscivores) by charac-
terizing their fatty acid profiles, (b) determine whether resource-use 
differences were influenced by life-history traits (e.g., size and age), 
(c) characterize and compare morphological variation among groups 
that expressed different feeding strategies, and (d) determine if 
genetic differences existed among groups. Because frequently an 
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association can be made between body size and niche use (Werner 
& Gilliam, 1984), we examined a subset of the largest lake trout of 
this ecotype from our collections (≥900 mm in fork length) referred 
to locally as “Giants” (Figure 2). The aim by including the Giants in 
our analysis was to determine whether they showed any ecological 
and genetic differences from others of this ecotype based on their 
remarkable and unusual size. These exceptionally large individuals 
of 900 mm comprise <1% of the lake trout population sampled in 
Great Bear Lake and are among the largest lake trout in the world 
(Chavarie, Howland, Venturelli, et al., 2016). Except for their singular 
large body size, these individuals show no major morphological or 
spatial and temporal distribution differences relative to other co-oc-
curring piscivorous lake trout.

2  | METHODS

2.1 | Study area and field sampling

Great Bear Lake is an oligotrophic Arctic freshwater system, 250 km 
south of the Arctic Ocean, in Northwest Territories, Canada (N66° 
06′ W120° 35′) (Johnson,  1975). As the world's ninth largest and 
19th deepest lake, the lake has a complex, multi-armed surface area 
of 31,790 km2 and a maximum depth of 446 m (mean depth = 90 m). 
Great Bear Lake was formed by scouring from the Laurentide ice-
sheet during the Pleistocene and was originally part of glacial Lake 
McConnell 8,000–10,000 yr BP (Johnson, 1975; Pielou, 2008). The 
lake has characteristics typical of an arctic lake: ultra-oligotrophic, 
short ice-free season, and a simple food web supporting only 15 fish 
species (Alfonso,  2004; Johnson,  1975; MacDonald et  al.,  2004). 
Great Bear Lake lacks a commercial fishery but plays an impor-
tant role in the local economy, supporting a fly-in sport fishery for 

tourists and a subsistence fishery for the small Sahtu community 
of Déline. Great Bear Lake has considerable intraspecific diversity 
within lake trout, lake whitefish (Coregonus clupeaformis), and cisco 
(C. artedi) (Chavarie et al., 2013; Howland et al., 2013).

Piscivorous lake trout were caught at depths ≤30  m using 
paired bottom sets (ca. 24  hr) of 140-mm and multi-mesh (38–
140 mm) stretched-mesh gill nets from late-July through August 
over multiple years (2002–2011) among all five arms of the lake 
(Table S1; Chavarie, Howland, Gallagher, et al., 2016; Chavarie 
et  al.,  2013, 2015). To increase the number of fish used in the 
Giant subset sample, we added lake trout caught during 2012–
2014, from multi-mesh gill nets (38–140 mm), with a typical soak 
time of 24  hr, that were distributed across random depth-strat-
ified sites (0–150  m) among Keith, McVicar, and McTavish arms 
(Giant only; Table S1, Figure 1). Compared to the other ecotypes, 
piscivores have a streamlined body, large gape, and high growth 
rates throughout life (Chavarie et  al.,  2013; Chavarie, Howland, 
Venturelli, et al., 2016. The piscivorous ecotype also displayed a 
modest level of genetic differentiation from the three other eco-
types (Harris et al., 2015).

We focused on adult trout due to the difficulty of classifying ju-
veniles into ecotypes (Chavarie et al., 2013; Zimmerman et al., 2006, 
2007) and to avoid the confounding effects of ontogenetic shifts 
in morphology, body size, and diet. Of 79 fish analyzed herein, 35 
piscivourous lake trout (Ecotype 2) were previously analyzed for 
fatty acids by Chavarie, Howland, Gallagher, et al. (2016) and 44 fish 
were new additions to the diet analyses presented here. Fish were 
selected from collections analyzed morphologically by Chavarie 
et al.  (2015) to include a range of sizes and ages within the pisciv-
orous ecotype. For analyses involving giant individuals, we selected 
lake trout with fork lengths ≥900  mm which comprise the largest 
lake trout inhabiting Great Bear Lake.

F I G U R E  1   Map of Great Bear Lake, 
Northwest Territories, Canada, adapted 
from Johnson (1975), indicating general 
bathymetry, the terrestrial ecozones 
(i.e., geographical region having a 
distinct biodiversity of flora and fauna) 
adjacent to the lake, and major inflowing 
and outflowing rivers. Insert: location of 
study area within Canada
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A left lateral full-body digital image was taken for each lake trout 
caught according to the procedures described in Muir et al. (2012). 
Measurements, tissues, and structures were sampled to determine 
biological characteristics related to life-history, including otoliths 
(for age), fork length (for size), sex, and stage of maturity (i.e., im-
mature, current year spawner, or resting) (Chavarie et  al.,  2013; 
Chavarie, Howland, Venturelli, et al., 2016). A dorsal muscle sam-
ple was collected and frozen at –20°C for fatty acid analysis (Budge 
et al., 2006; Kavanagh et al., 2010; Loseto et al., 2009), and tissue 
from pectoral fins was collected and preserved in 95% ethanol for 
genetic analyses.

2.2 | Fatty acids

Analysis of 41 dietary fatty acids was carried out using procedures 
described by Chavarie, Howland, Gallagher, et al. (2016) (Table  1). 
Muscle samples were freeze-dried and subsequently homogenized 
with a mortar and pestle. Lipids were extracted overnight from 1 g of 
homogenate in a 2:1 chloroform–methanol solution containing 0.01% 
BHT (v/v/w) at –20°C (Folch et al., 1957). After extraction, samples 
were filtered through Whatman Grade 1 Qualitative filter paper 
and the filter paper/sample was rinsed twice with 2  ml of the 2:1 
chloroform:methanol. Sample extract was collected in a test tube, and 
7 ml of 0.88 N NaCl solution was added to encourage fatty acids to 
move into the organic (chloroform) layer. The aqueous layer was dis-
carded after which the chloroform was dried with sodium sulfate prior 
to total lipid measurement. The extracted lipid was used to prepare 
fatty acid methyl esters (FAME) by transesterification with Hilditch 
reagent (0.5 N H2SO4 in methanol) (Morrison & Smith, 1964). Samples 
were heated for 1  hr at 100°C. Gas chromatographic (GC) analysis 
was performed on an Agilent Technologies 7890N GC equipped with 
a 30 m J&W DB-23 column (0.25 mm I.D; 0.15 μm film thickness). The 
GC was coupled to a Flame Ionization Detector operating at 350°C. 
Hydrogen was used as carrier gas flowing at 1.25 ml/min for 14 min 
and increased to 2.5 ml/min for 5 min. The split/splitless injector was 

heated to 260°C and run in splitless mode. The oven program was as 
follows: 60°C for 0.66 min, increasing by 22.82°C/min to 165°C with 
a 1.97 min hold; increasing by 4.56°C/min to 174°C and by 7.61°C/
min to 200°C with a six min hold. Peak areas were quantified using 
Agilent Technologies ChemStation software. Fatty acid standards 
were obtained from Supelco (37 component FAME mix) and Nuchek 
(54 component mix GLC-463).

All fatty acid values were converted to a mass percentage of 
the total array and were named according the IUPAC nomencla-
ture as X:Y n-z, where X is the number of carbon atoms in the 
fatty acids, Y is the number of methylene-interrupted double 
bonds in the chain, and n-z denotes the position of the last double 
bond relative to the methyl terminus (Ronconi et al., 2010). Fatty 
acids suggested by Iverson et al. (2004) as important dietary fatty 
acids, which transfer from prey to predator, were used in our anal-
yses (Table  1). Fatty acid profiles (% of fatty acids) were trans-
formed using arcsin square-root function. Fatty acid groups were 
identified using a multivariate analysis R Package (Team, 2017), 
FactoMineR, using a hierarchical clustering analysis based on prin-
cipal components (Husson et al., 2012). To reduce the number of 
variables used, A SIMPER (similarity percentage routine) was per-
formed using PAST 3 (Hammer et al., 2001) to assess which fatty 
acids were primarily responsible for observed differences among 
groups (King & Jackson,  1999). A principal component analysis 
(PCA) was performed on the fatty acid profiles with PC-ORD 
version 6 (McCune & Mefford,  2011) among piscivorous groups 
to provide inferences about patterns of resource use as defined 
by Chavarie, Howland, Gallagher, et al. (2016). Two-way permu-
tational multivariate analysis of variance (PERMANOVA), a non-
parametric analog of multivariate analysis of variance (MANOVA), 
was used to test for differences in fatty acid composition among 
the groups identified by FactoMineR and among arms of the lake 
(i.e., to investigate any spatial variations within the piscivorous 
ecotype). Two-way PERMANOVA was performed in PAST 3 using 
9,999 permutations. Pairwise post hoc comparison (Bonferroni 
corrected) followed to test differences among groups defined by 

F I G U R E  2   Example of a piscivorous 
(64 cm) and a Giant (100 cm standard 
length) Lake Trout, respectively, from 
Great Bear Lake (NT)
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FactoMineR and among arms of the lake. Pairwise post hoc com-
parison (Bonferroni corrected) also followed to test differences 
among arms of the lake (i.e., spatial variation). Finally, the fatty 

acid groups determined by FactoMineR were tested for differ-
ences in depth of capture using one-way analysis of similarities 
(ANOSIM) with 9,999 permutations using PAST 3.

Fatty acids Group 1 Group 2 Group 3 Group 4

14:0 6.8 ± 1.0 7.0 ± 1.0 9.2 ± 1.0 9.9 ± 1.1

16:0 28.1 ± 1.0 28.13 ± 1.7 24.2 ± 1.7 26.1 ± 1.2

16:1n-7 15.9 ± 3.7 10.1 ± 2.0 19.5 ± 3.4 15.6 ± 2.1

16:2n-6 2.0 ± 0.5 2.4 ± 0.6 2.6 ± 0.2 3.1 ± 0.2

16:2n-4 2.6 ± 0.7 1.5 ± 0.4 2.7 ± 0.9 2.3 ± 0.4

17:0 2.7 ± 0.5 2.8 ± 0.3 2.4 ± 0.4 2.8 ± 0.2

16:3n-4 1.5 ± 0.7 1.4 ± 0.5 1.9 ± 0.6 1.8 ± 0.9

16:4n-3 2.6 ± 1.2 0.8 ± 0.3 1.3 ± 0.6 1.2 ± 0.4

16:4n-1 1.6 ± 0.7 1.5 ± 0.8 0.9 ± 0.6 1.0 ± 0.6

18:0 14.2 ± 1.6 13.1 ± 0.8 11.6 ± 0.7 11.7 ± 0.5

18:1n-9 20.6 ± 4.1 18.5 ± 3.4 32.3 ± 3.9 27.9 ± 3.5

18:1n-7 11.9 ± 2.4 9.5 ± 1.0 13.9 ± 1.2 12.5 ± 0.8

18:2n-6 8.6 ± 1.5 9.2 ± 1.6 12.4 ± 1.2 12.9 ± 1.0

18:2n-4 2.0 ± 0.4 1.5 ± 0.2 2.1 ± 0.2 2.1 ± 0.2

18:3n-6 2.2 ± 0.8 1.5 ± 0.4 2.5 ± 0.4 2.3 ± 0.2

18:3n-4 2.2 ± 0.7 1.5 ± 0.3 2.4 ± 0.4 2.0 ± 0.3

18:3n-3 6.6 ± 1.4 6.9 ± 0.9 7.9 ± 0.6 8.7 ± 0.7

18:3n-1 1.2 ± 0.7 1.2 ± 0.3 1.1 ± 0.3 1.5 ± 0.3

18:4n-3 3.5 ± 0.7 4.0 ± 1.2 4.9 ± 0.7 5.6 ± 0.7

18:4n-1 1.3 ± 0.6 0.4 ± 0.5 0.9 ± 0.5 1.2 ± 0.6

20:0 2.1 ± 0.7 2.8 ± 0.7 3.1 ± 0.6 2.8 ± 0.8

20:1n-11 1.7 ± 1.0 0.8 ± 0.5 1.9 ± 0.8 1.4 ± 0.4

20:1n-9 6.0 ± 1.4 4.2 ± 0.8 7.9 ± 0.9 7.1 ± 0.9

20:1n-7 2.5 ± 0.4 2.5 ± 0.3 3.8 ± 0.4 4.1 ± 0.6

20:2n-9 0.8 ± 0.6 1.4 ± 0.8 1.3 ± 0.4 1.2 ± 0.4

20:2n-6 3.8 ± 0.9 4.7 ± 0.9 6.8 ± 1.3 7.5 ± 1.0

20:3n-6 3.4 ± 0.5 3.6 ± 0.4 4.4 ± 0.5 4.0 ± 0.4

20:4n-6 13.8 ± 1.7 14.2 ± 1.3 10.1 ± 1.1 10.0 ± 1.2

20:3n-3 3.5 ± 0.7 4.5 ± 0.9 5.1 ± 0.6 6.6 ± 0.7

20:4n-3 6.1 ± 1.2 8.2 ± 1.3 8.8 ± 1.1 10.8 ± 0.9

20:5n-3 18.0 ± 2.9 15.7 ± 1.2 11.8 ± 2.1 12.2 ± 1.8

22:1n-11 1.8 ± 1.7 0.9 ± 0.5 1.0 ± 1.3 0.9 ± 0.4

22:1n-9 2.2 ± 0.5 2.4 ± 0.4 3.3 ± 0.4 3.1 ± 0.4

22:1n-7 1.2 ± 0.6 1.0 ± 0.5 1.1 ± 0.3 1.6 ± 0.4

22:2n-6 1.4 ± 0.5 1.7 ± 0.6 3.0 ± 0.5 4.0 ± 0.8

21:5n-3 0.9 ± 0.6 1.8 ± 0.6 2.2 ± 0.6 1.6 ± 0.9

22:4n-6 0.2 ± 0.5 1.0 ± 1.6 0.3 ± 0.6 1.6 ± 1.7

22:5n-6 7.6 ± 1.1 10.7 ± 1.4 7.7 ± 0.7 9.6 ± 1.4

22:4n-3 2.3 ± 0.9 4.2 ± 1.3 5.1 ± 0.9 7.2 ± 1.7

22:5n-3 10.4 ± 0.9 10.8 ± 0.6 10.4 ± 2.4 11.1 ± 0.7

22:6n-3 33.9 ± 5.6 38.9 ± 4.3 23.1 ± 3.7 26.3 ± 4.7

Note: Fatty acids are measured as percentage (% ± SD).

TA B L E  1   Relative fatty acid 
concentrations of 41 fatty acids for the 
four groups of piscivorous Lake Trout 
morph identified from Great Bear Lake
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2.3 | Life history

To determine whether growth differed among groups of fish with 
different fatty acid profiles, length–age models were compared 
among groups using the Von Bertalanffy length–age model fit to 
length at age-of-capture of individual fish (Quinn & Deriso, 1999):

The length–age model describes length Lt at age-of-capture t as a 
function of theoretical maximum length (L∞ = mm), instantaneous rate 
at which Lt approaches L∞ (K = 1/year), theoretical age-at-zero length 
(t0 = years), and multiplicative error (ε). Model parameters, L∞, K, and 
t0, and associated standard errors were estimated using nonlinear 
regression. Residual sums-of-squares were compared between a full 
model (separate models for each group) to a reduced model (a single 
model for all groups) in a likelihood-ratio test (Hosmer et al., 2000). 
If the likelihood-ratio test was significant (p  ≤  .05), we concluded 
that growth differed among groups identified by fatty acids. If the 
likelihood-ratio test was not significant (p > .05), we concluded that 
growth did not differ among groups. The same test was repeated for 
each pair of groups, with and without giant individuals (fork length 
≥900  mm) included in each group, to isolate the influence of this 
subset in our size-at-age comparison due to the prevalence of gi-
ants in one of the groups (see Results). Finally, to determine whether 
fatty acid groups were an artifact of sex or maturity status, similarity 
of numbers of males versus females and resting versus nonresting 
individuals was tested using chi-square contingency table analysis 
(Zar, 2010).

2.4 | Genetic analyses

To determine whether genetic differences existed among individ-
uals expressing different feeding strategies, the 79 lake trout clas-
sified by fatty acid composition into four groups were genotyped 
to determine genetic variation and structure within and among 
groups. To allow a sample size sufficient for making a genetic com-
parison of giants to the other dietary groups, 22 additional indi-
viduals determined nonrandomly by their size (≥900  mm ; giant 
subset) from the 2002–2015 collections were added to giants 
processed for fatty acids, for a total of 39 giants. Lake trout DNA 
was extracted from pectoral fin tissue preserved in ethanol using 
DNEasy extraction kits (Qiagen Inc., Valencia, CA) following man-
ufacturer protocols. Piscivorous groups were assayed using a suite 
of 23 putatively neutral microsatellite markers amplified in four 
multiplexes previously described in Harris et al. (2015). Amplified 
microsatellite fragments were analyzed using an automated se-
quencer (ABI 3130xl Genetic Analyzer; Applied Biosystems, 
Foster City, CA). The LIZ 600 size standard was incorporated for 
allele base-size determination. All genotypes were scored using 
GeneMapper software ver. 4.0 (Applied Biosystems) and then 
manually inspected to ensure accuracy.

The program MICROCHECKER ver. 2.2.0.3 (Van Oosterhout 
et  al.,  2004) was used to identify genotyping errors, specifically 
null alleles and large allele dropout. Observed and expected het-
erozygosity (HE and HO) were calculated using GENEPOP ver. 4.2 
(Rousset, 2008). The program HP-RARE ver. 1.1 (Kalinowski, 2005) 
was used to determine the number of alleles, allelic richness, and 
private allelic richness for each group, sampling 22 genes in each 
sample. Tests of departure from Hardy–Weinberg equilibrium 
and genotypic linkage disequilibrium within each sample (i.e., for 
each fatty acid grouping and the Giant subset) were conducted in 
GENEPOP using default values for both. Results from all tests were 
compared with an adjusted alpha (α = 0.05) following the false dis-
covery rate procedure (Narum, 2006).

We used the POWSIM V. 4.1 analysis to assess the statistical 
power of our microsatellite data set given the observed allelic fre-
quencies within our samples in detecting significant genetic dif-
ferentiation between sampling groups (Ryman & Palm,  2006). For 
POWSIM analyses, we assumed that lake trout within our study 
diverged from a common baseline population with the same allelic 
frequencies as observed in our contemporary samples. Simulations 
were performed with an effective population size of 5,000 to yield 
values of FST of 0.01, 0.005, and 0.001. The significance of tests in 
POWSIM was evaluated using Fisher's exact test and the chi-square 
test and the statistical power was determined as the proportion of 
simulations for which these tests showed a significant deviation 
from zero. All simulations were performed with 1,000 iterations.

Genetic structuring was tested among lake trout groups using 
several different methods. First, genotypic differentiation among 
lake trout groups was calculated using log-likelihood (G) based exact 
tests (Goudet et  al.,  1996) implemented in GENEPOP. Global FST 
(θ) (Weir & Cockerham,  1984) was calculated in FSTAT ver. 2.9.3 
(Goudet,  1995), and pairwise comparisons of FST between groups 
were calculated in ARLEQUIN ver. 3.5 (Excoffier et al., 2005) using 
10,000 permutations. We then employed the Bayesian clustering 
program STRUCTURE V. 2.3.2 (Pritchard et al., 2000) to resolve the 
putative number of populations (i.e., genetic clusters (K)) within our 
samples. Owing to the remarkably low levels of genetic differenti-
ation among lake trout in the Great Bear Lake (Harris et al., 2013, 
2015), we employed the LOCPRIOR algorithm (Hubisz et al., 2009). 
The LOCPRIOR algorithm considered the location/sampling infor-
mation as a prior in the model, which may perform better than the 
traditional STRUCTURE model when the genetic structure is weak 
(Hubisz et al., 2009). We also incorporated an admixture model with 
correlated allelic frequencies and the model was run with a burn-in 
period of 500,000 iterations and 500,000 Markov chain Monte Carlo 
iterations. We varied the potential number of populations (K) from 1 
to 10, and we ran 20 iterations for each value of K. The STRUCTURE 
output was first processed in the program STRUCTURE HARVESTER 
(Earl, 2012), followed by the combination of results of independent 
runs of the program and compilation of results based on ln P(D) and 
the post hoc ΔK statistic of Evanno et al.  (2005), to infer the most 
likely number of clusters. The best alignment of replicate runs was 
assessed with CLUMPP V. 1.1 (Jakobsson & Rosenberg, 2007) and 

Lt = L
∞
(1 − e

−K ( t− t0 ) ) �
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DISTRUCT V. 1.1 (Rosenberg, 2004) was then used to visualize the 
results. For STRUCTURE analyses, we reported both lnP(D) and the 
post hoc ΔK statistic.

Finally, discriminant analysis of principal components (DAPC) 
(Jombart et  al.,  2010) was implemented in the Adegenet package 
(Jombart, 2008) in R (Team, 2015) to identify the number of clusters. 
The number of clusters was identified using the find.clusters function 
(a sequential K-means clustering algorithm) and subsequent Bayesian 
Information Criterion (BIC), as suggested by Jombart et al.  (2010). 
Stratified cross-validation (carried out with the function xvalDapc) 
was used to determine the optimal number of principal components 
to retain in the analysis.

2.5 | Morphology

Morphological variation was quantified for the 79 lake trout and used 
to compare fatty acid groupings (different feeding strategies) identi-
fied within the piscivorous ecotype. Twenty-three landmarks and 20 
semi-landmarks, based on Chavarie et al.  (2015), and fourteen linear 
measurements based on Muir et al. (2014), were used to characterize 
body and head shape from digital images. The combination of tradi-
tional and geometric ecotype metrics was used because relationships 
of an individual's morphology related to foraging (e.g., jaw size) and 
swimming (e.g., fin lengths and caudal peduncle depth) (Kahilainen 
et al., 2004; Kristjánsson et al., 2002; Webb, 1984). Landmarks and 
semi-landmarks were digitized in x and y coordinates using TPSDig2 
software (http://life.bio.sunysb.edu/ecotype). Subsequently, digi-
tized landmarks and semi-landmarks were processed in a series of 
Integrated Morphometrics Programs (IMP) version 8 (http://www2.
canis​ius.edu/;sheet​s/ecoty​pesoft), using partial warp scores, which are 
thin-plate spline coefficients. Morphological methods and programs 
are described in Zelditch et al.  (2012), and specific procedures were 
described in further detail by Chavarie et al. (2013). All morphological 
measurements were size-free, using centroid sizes or residuals from 
regressions on standard length (Zelditch et al., 2012).

Canonical variate analyses (CVA) were conducted on all mor-
phological data, including body shape, head shape, and linear mea-
surements, to determine whether morphological differentiation 
occurred among fatty acid groups. Body and head shape were ana-
lyzed using CVAGen8 from the IMP software (Zelditch et al., 2012), 
and for linear measurements, CVA was analyzed with SYSTAT 
(Systat Software Inc., Chicago, IL, USA). Single Factor Permutation 
MANOVA with 10,000 permutations tested for differences among 
groups and determined the percentage of variation explained for 
a grouping if a CVA was significant. For linear measurements, a 
Bonferroni-corrected post hoc test followed MANOVA to identify 
measurements that differed among group. Principal component 
analyses (PCA) were performed on body- and head-shape data using 
PCAGen8 (IMP software) to determine morphological variation 
among individuals within the data set. PC-ORD version 6 software 
(McCune & Mefford, 2011) was used to perform a PCA on the linear 
measurements.

3  | RESULTS

3.1 | Fatty acids

On the basis of fatty acid composition, piscivorous lake trout were di-
vided along a resource-use axis into four groups (1–4; Figure S2), con-
taining 14, 16, 21, and 28 individuals, respectively (Figure 3 and Figure 
S2; Table 1). Average dissimilarity was 14.61 (SIMPER analysis), whereas 
the most discriminating 26 fatty acids, explaining together ~89% of the 
separation among groups, were as follows: 22:6n-3 (12.5%), 18:1n-9 
(10.8%), 16:1n-7 (6.8%), 20:5n-3 (5.0%), 20:4n-6 (3.9%), 18:2n-6 (3.8%), 
22:4n-3 (3.7%), 16:0 (3.5%), 20:4n-3 (3.3%), 18:1n7 (3.3%), 20:2n-6 
(3.1%), 14:0 (2.8%), 20:1n-9 (2.7%), 22:5n-6 (2.7%), 20:3n-3 (2.3%), 
22:2n-6 (2.1%), 18:0 (2.0%), 18:3n-3 (1.9%), 18:4n-3 (1.8%), 22:4n-6 
(1.7%), 20:1n-7 (1.5%), 22:5n-3 (1.4%), 21:5n-3 (1.3%), 22:1n-11 (1.2%), 
20:0 (1.2%), 16:4n-3 (1.2%), and 16:2n-4 (1.1%) (Table 1). The first two 
axes of the fatty acid PCA explained 65.2% of the variation, and the 
four groups were supported by PERMANOVA (F3,76 = 23.9, p <  .01) 
and pairwise comparisons between all pairs (all p  <  .01; Bonferroni 
corrected). Spatial differences in fatty acid composition were found 
among lake arms (F4,76 = 3.2, p < .01). Pairwise comparisons identified 
differences between Smith and McVicar arms (p = .02; Bonferroni cor-
rected; Figure S3). Interaction between fatty acid groups and arms was 
not significant (p > .05). Finally, depth of capture did not differ among 
fatty acid groups (p > .05). For all groups, most lake trout were caught 
between 0 and 20 m (Figure S4).

3.2 | Life history

Overall, life-history parameters did not differ among lake trout 
grouped by fatty acid composition, including length–age models 
(Figure  4; F9,63  =  1.58; p  =  .141). With the giant subset included, 
growth differed between only Group 3 and Group 4 (F3,41 = 3.958; 
p = .014), but not between any other pairs (p > .1). Without Giants 
included (prevalence of Giants was higher in Group 3 than Group 
1, Group 2, and Group 4), none of the pairs differed in length 
at age (p  >  .1), which suggests growth was similar among groups. 
The sex ratio was equally distributed among fatty acid groups (chi-
square = 0.59; df = 3; p = .90), and the chi-square test indicated that 
fatty acid groups did not differ either in numbers of males versus 
females nor resting versus nonresting individuals (males and females 
combined; chi-square = 3.92; df = 3; p = .27).

3.3 | Genetic differentiation

Piscivorous lake trout groups displayed little genetic differentiation, 
except for the Giant subset, which differed slightly from other groups 
that were defined by fatty acids. MICROCHECKER identified two 
loci (OtsG253b and Sco102) that contained null alleles. These loci, 
along with nonvariable loci Sco218 and SSOSL456, were removed, 
leaving 19 informative loci for subsequent analyses. Descriptive 

http://life.bio.sunysb.edu/ecotype
http://www2.canisius.edu/;sheets/ecotypesoft
http://www2.canisius.edu/;sheets/ecotypesoft
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statistics of genetic variation were similar among groups. The num-
ber of alleles per locus ranged from four (Smm21) to 41 (SnaMSU10) 
and averaged 28.75 across all loci. Averaged observed heterozygo-
sity ranged from 0.78 (Giant) to 0.83 (Group 1) while expected het-
erozygosity was 0.84 for all groups except Group 1 (0.85; Table 2). 
Allelic richness ranged from 9.57 (Group 2 and 4) to 9.87 (Group 1), 
while expected private allelic richness ranged from 0.87 (Group 3) to 
1.08 (Group 2; Table 2). Only five of 95 tests (all of which involved 
different loci) showed significant departures from Hardy–Weinberg 

equilibrium after adjustment for false discovery rate (adjusted 
α  =  0.01). Of those five, all were heterozygote deficits and three 
involved the Giant subset. Only nine of 885 tests revealed signifi-
cant linkage disequilibrium after adjusting for false discovery rate 
(adjusted α = 0.0068). No locus-pair linkage disequilibrium combi-
nations were consistently significant, but seven of nine departures 
were in the Giant subset.

Using our microsatellite data set, the POWSIM analysis in-
dicated a 100% power of detecting FST values as low of 0.01 and 

F I G U R E  3   Principal component 
analysis of fatty acids of 79 Lake Trout 
classified as the piscivorous morph from 
Great Bear Lake, based on the most 
discriminating 26 fatty acids from SIMPER 
analysis, explaining together ~89% of 
the separation among groups. (a) Vectors 
of individual fatty acids contributing to 
the positioning of piscivorous individuals 
and the convex hull delimitating group's 
position are shown. (b) Individual Lake 
Trout are represented as circle = Group 
1, square = Group 2, triangle = Group 3, 
and diamond = Group 4. To visualize their 
variation within and among groups, large 
symbols were used to depict individuals 
longer than 900 mm fork length, which 
were identified as the Giant subset in 
this study. Groups were defined by 
FactoMineR using fatty acids, and they 
are outlined by convex hulls
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0.005. However, power was reduced to 77% when assessing ge-
netic differentiation at a FST of 0.001. Overall, our microsatellite 
data set (including the number of loci, alleles per locus, and sample 
sizes) had sufficient power to detect relatively low levels of genetic 
differentiation

Global genetic differentiation was extremely low (θ = 0.001, 95% 
c.i. = −0.002 − 0.005) among the groups of piscivorous lake trout. 
Pairwise FST ranged from −0.004 to 0.016 (Table  3); comparisons 
that included Giants always differed the most from the other fatty 
acid groups, and they were involved in the only significant pairwise 
comparisons (p < .05, Table 3). The FST values for the Giant versus. 
Groups 1 and 4 were generally similar to genetic differentiation 
among the four original lake trout ecotypes in Great Bear Lake, ex-
cept for Ecotype 1 versus Ecotype 2 (Table 3). Bayesian clustering 
implemented in STRUCTURE provided evidence for two genetic 
clusters when evaluating both ln P(D) or ΔK (Table S2). The admix-
ture plot based on K = 2 showed no clear genetic structure between 
groups defined by fatty acid analysis; however, some differentia-
tion of the Giant subset from the fatty acid groups was observed 
(Figure 5).

Finally, the Bayesian information criterion in the DAPC analysis 
(BIC = 185.42, Table S3, Figure S5a) suggested that two clusters best 
explained genetic structure in our study (30 PCs retained as sug-
gested by the cross-validation procedure; Figure S5b). A compoplot 
(barplot showing the probabilities of assignment of individuals to 
the different clusters) for K = 2 revealed no clear genetic structure 

between two groups identified by the DAPC analysis except for the 
Giant group, which appeared to have more individuals assigned to 
cluster two (Figure  5). Density plots of the discriminant function, 
however, suggested that the two clusters identified through the 
DAPC analysis were mostly nonoverlapping (Figure S5c).

3.4 | Morphology

Morphological variation was low among the four dietary groups 
within the piscivorous ecotype. The first canonical axis for body 
shape CVA was significant (p ≤  .05), but head shape CVA revealed 
no significant canonical axes (p  >  .05) in groupings (Figure  6a-c). 
MANOVAs for body and head shape were not significant (p > .05). 
Linear measurements CVA revealed one significant canonical axis 
(p ≤ .05). MANOVA permutation tests confirmed differences in lin-
ear measurements among groups (p = .047). Most distinctions were 
related to linear measurements of heads, with upper and lower jaws, 
head depth, and snout-eye lengths differing between Group 3 and 
Group 4 (p ≤ .05), and head length differing between Group 1 and 4 
(p =  .03; Figure 7). Caudal peduncle length and anal fin length dif-
fered marginally between Groups 2 versus 3 (p = .068) and Groups 
1 versus 3 (p = .075), respectively. The first two PCA axes explained 
44.3% and 12.3% of variation for body shape, 35.1% and 30.7% of 
variation for head shape, and 39.6% and 20.9% for linear measure-
ments (Figure 6d-f).

4  | DISCUSSION

A common assumption in polyphenism is that partitioning and vari-
ability of resource use will occur predominantly among ecotypes 
rather than within ecotypes. In contrast, homogeneity of resource 
use is anticipated to occur within ecotypes, be spatially and tem-
porally stable, and provide the selection opportunity for speciali-
zation (Amundsen et  al.,  2008; Knudsen et  al.,  2010; Svanbäck & 
Persson,  2004). However, this study provided evidence that vari-
ation occurred within an ecotype due to diet specialization among 
individuals, possibly a precursor to further population diversifica-
tion via fine-scale ecological selection (Richardson et  al.,  2014; 
Vonlanthen et al., 2009).

Using fatty acids as dietary biomarkers, four distinct patterns 
of resource use were identified within the piscivorous lake trout of 
Great Bear Lake (Figure 2). Groups 3 and 4 had the most overlap, and 
these groups were characterized by C20 and C22 monounsaturates, 
biomarkers of a food web based on pelagic or deep-water copepods 
(Ahlgren et al., 2009; Happel et al., 2017; Hoffmann, 2017; Loseto 
et al., 2009; Stowasser et al., 2006). Specifically, 20:1n-9 is associ-
ated with calanoid copepods known to be particularly important in 
northern pelagic food webs (Ahlgren et al., 2009; Budge et al., 2006; 
Kattner et al., 1998; Loseto et al., 2009). High levels of 14:0, 18:3n-3 
and 18:4n-3 fatty acids within groups 3 and 4 are also associ-
ated with pelagic environments (Scharnweber et  al.,  2016; Tucker 

F I G U R E  4   Fork length (mm) at age (years) for four groups of 
piscivorous Lake Trout sampled from Great Bear Lake in 2002–
2015 (Group 1 = squares; Group 2 = circles; Group 3 = triangles; 
diamond = Group 4). Large symbols depict Giants (FL > 900 mm) 
within each group. The von Bertalanffy length–age models are 
depicted as a solid line (without Giants) and a dashed line (with 
Giants)



10  |     CHAVARIE et al.

et al., 2008), although high levels of 18:2n-6 and 18:3n-3 have also 
been associated with terrestrial markers (Budge & Parrish,  1998; 
Budge et al., 2001; Hoffmann, 2017).

Groups 1 and 2 were characterized by high concentrations of 
16:4n-3, 20:4n-6, and 22:6n-3 found in diatom and dinoflagel-
late-based food webs, respectively. The fatty acid 20:4n-6 reflects 
a benthic feeding strategy (from benthic invertebrates to fish) 
(Stowasser et al., 2006; Tucker et al., 2008), whereas 22:6n-3 in pen-
nate diatoms (Iverson, 2009) and filter feeders links planktonic di-
noflagellates to benthic filter-feeding bivalves in a food web (Alfaro 
et al., 2006; Virtue et al., 2000). Relatively high concentrations of 
16:0, 18:0, and 22:6n-3 and low concentrations of 16:1n-7 supported 
the interpretation of carnivorous (or cannibalistic) dietary patterns 
or higher trophic position (Dalsgaard et  al.,  2003; Iverson,  2009; 
Iverson et al., 2004; Piché et al., 2010). Although the physiological 
state of individuals cannot be ruled out as internal drivers (Chavarie 
et al., 2020; Keva et al., 2019; Manor et al., 2014), individuals po-
sitioned between ends of principal components suggest a clinical 
pattern of resource use or habitat coupling (Vonlanthen et al., 2009), 

TA B L E  2   Number of individuals genotyped (N), number of alleles 
(NA), expected heterozygosity (HE), observed heterozygosity (HO), 
allelic richness (AR) and private allelic richness (PAR) within fatty 
acid groups identified within a piscivorous morphotype of Lake 
Trout from Canada's Great Bear Lake

N NA HE HO AR PAR

Group 1 12 10.16 0.85 0.83 9.87 1.08

Group 2 16 11.26 0.84 0.82 9.57 0.99

Group 3 20 12.32 0.84 0.81 9.70 0.87

Group 4 28 14.11 0.84 0.81 9.57 0.98

Giant 39 15.95 0.84 0.78 9.69 1.05

TA B L E  3   Pairwise FST based on variation at microsatellite loci among Lake Trout morphs from Harris et al. (2015) and piscivorous fatty 
acid dietary groups from Great Bear Lake

Morph 1 Morph 2 Morph 3 Group 1 Group 2 Group 3
Group 
4

Morph 1 Group 1

Morph 2 0.063** Group 2 0.003

Morph 3 0.004** 0.007** Group 3 0.001 −0.01

Morph 4 0.012** 0.017** 0.009** Group 4 0.005 −0.004 −0.002

Giant 0.016** 0.001 −0.002 0.006**

Note: Significant results are represented as follow: * values are significant at an initial α of 0.05, and ** values are significant at an α of 0.02 
subsequent false discovery rate adjustments for multiple comparisons.

F I G U R E  5   Results of the Bayesian clustering analysis implemented in the program STRUCTURE (B) and the compoplot of percent 
membership assignment revealed from the discriminant analysis of principal component (DAPC) analysis (B) for piscivorous Lake Trout from 
Great Bear Lake. The graph shows the admixture coefficient/percent membership assignment plot where each individual is represented as 
a vertical line partitioned into colored segments representative of an individual's fractional membership in any given cluster (K). The most 
likely number of genetic clusters was two in both the STRUCTURE analysis (based on ln P[D] and the ∆K statistic of Evanno et al. (2005)) and 
DAPC analysis (based on the lowest BIC score and with 30 PCs retained)
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where borders among groups are neither abrupt nor obvious as they 
are part of a continuum (Hendry et al., 2009).

Sympatric divergence, in which barriers to gene flow are 
driven by selection between ecological niches, has been impli-
cated in the evolution of ecological and morphological variation 
in fishes (Chavarie, Muir, et al., 2016; Hendry et al., 2007; Præbel 
et al., 2013). Size has a predominant influence on animal ecolog-
ical and evolutionary aspects, from the potential of resource ex-
ploitation and niche differentiation, to spawning strategies (Kohda 
et al., 2008; Nagel & Schluter, 1998; Werner & Gilliam, 1984). In 
a fish population, associations between growth, body size, and 
niche use are frequently observed, but in this study, differences 
in growth models were not detected to influence the niche use 
and the individual specialization observed within the piscivo-
rous ecotype. However, despite the limited ability of neutral mi-
crosatellite markers to detect patterns of functional divergence 
(Berg et al., 2016; Lamichhaney et al., 2016; Roesti et al., 2015), 
the significant genetic differentiation based on comparisons with 
Giant subset suggests some deviation from panmixis within the 
piscivorous ecotype. Such a genetic pattern displayed by the Giant 
subset, despite a lack of ecological discreteness, perhaps resulted 
from size-assortative mating and/or differences in timing and 

location of spawning (Nagel & Schluter, 1998; Rueger et al., 2016; 
Servedio et al., 2011). Great Bear Lake is not the only lake in North 
America with an apparent divergence in lake trout body size; in 
Lake Mistassini, “Giant” individuals also differed genetically from 
other lake trout groups (Marin et al., 2016). The similarity based 
on lake trout body size between both lakes suggests analogous 
variables favoring partial reproductive isolation. Although alter-
native causes of genetic differentiation may be possible, due to 
the short time since the onset of divergence, postzygotic isolation 
seems unlikely in this system (e.g., prezygotic isolation generally 
evolves more rapidly Coyne & Orr, 2004) and we therefore favor 
assortative mating based on size and location as an explanation for 
the low-level genetic divergence observed. Nonetheless, putative 
partial reproductive isolation within an ecotype adds to the com-
plexity of diversification and speciation processes potentially oc-
curring within lake trout in Great Bear Lake (Hendry, 2009; Nosil 
et al., 2009).

A central question arising from our analysis is what are the 
mechanisms behind these patterns of variation? As individual 
specialization can result in dietary subgroups and perhaps differ-
ences in habitat use among sections of a population, such interin-
dividual variation within ecological subgroups could substantially 

F I G U R E  6   Canonical variate analyses (95% ellipses) and principal component analysis of body shape (a, d), head shape (b, e), and linear 
measurements (c, f), respectively, of piscivorous Lake Trout represented as: square = Group 1, circle = Group 2, triangle = Group 3, and 
diamond = Group 4. The first two PCA axes explained 44.3% and 12.3% of variation for body shape, 35.1% and 30.7% of variation for head 
shape, and 39.6% and 20.9% for linear measurements (d, e, f). To visualize their variation within and among groups, individuals longer than 
900 mm FL, which considered the Giant subset in this study, are depicted by larger symbols
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influence processes of diversification (Araújo et al., 2008; Cloyed 
& Eason,  2016). Among-individual resource specialization within 
an ecotype in a species-poor ecosystem like Great Bear Lake could 
reflect the diversifying force of intraspecific competition, lack of 
constraining effects of interspecific competition, the abundance 
and distribution of resources (e.g., temporal and spatial variation 
of resources), or some combination of these variables (Bolnick 
et al., 2007; Cloyed & Eason, 2016). Multiple patterns of resource 
specialization within a single ecotype, as we see for lake trout in 
Great Bear Lake, contrasts with the expected pattern of trophic 
divergence among ecotypes and homogenization in habitat use 
or diet within an ecotype, a key assumption guiding the develop-
ment of functional ecological theory (Svanbäck & Persson, 2004; 
Violle et al., 2012). Expression of intraspecific divergence through 
habitat and foraging specialization is thought to drive selection on 
traits that enable more efficient use of resources (Schluter, 2000; 
Skulason & Smith, 1995; Snorrason & Skúlason, 2004).

In Great Bear Lake, multiple trophic generalists (which include 
the piscivores studied herein) coexist with one specialist lake trout 
ecotype (Chavarie, Harford, et al., 2016; Chavarie et  al.,  2018; 
Chavarie, Howland, Venturelli, et al., 2016). This contrasts with 
the more commonly reported observation of multiple specialist 
ecotypes (Elmer,  2016; Kassen,  2002). A generalist population, 

however, can be composed of several subsets of specialized in-
dividuals (Bolnick & Paull, 2009; Bolnick et al., 2002, 2007). This 
broad distribution of trophic variation within a population appears 
to be the case within Great Bear Lake piscivores. The among-indi-
vidual specialization may result, to some degree, from variable use 
of spatially separated resources and possibly temporally variable 
resources, both of which could be expected in a large northern 
lake (Figure S3; Costa et  al.,  2008; Cusa et  al.,  2019; Quevedo 
et  al.,  2009). Lake Trout has the reputation of being a mobile 
predator that displays flexible foraging behavior by moving across 
spatially disparate habitats, both within and among populations 
and seasons (Guzzo et  al.,  2017; Vander Zanden et  al.,  2000). 
Ecologically, among-individual resource specialization within an 
ecotype is another form of diversity (Araújo et al., 2008; Bolnick 
et  al.,  2003; Pires et  al.,  2011). Such diversity may increase sta-
bility and persistence of an ecotype within a system where en-
ergy resources are scarce and ephemeral (Cloyed & Eason, 2016; 
Pfennig & Pfennig, 2012; Smith et al., 2011). Whether the level of 
among-individual specialization within this ecotype is stable or not 
is a question that cannot be answered with our data.

Realized niche expansions are often linked to individuals of dif-
ferent morphologies and body sizes, with evidence of efficiency 
trade-offs among different resources  (Cloyed & Eason,  2016; 

F I G U R E  7   Residuals of mean (±95% CI) size-standardized upper and lower jaw lengths, head depth and length, and snout-eye length 
among piscivorous Lake Trout groups. Grouping symbols are as follows: square = Group 1, circle = Group 2, triangle = Group 3, and 
diamond = Group 4, and significant differences are highlighted with *
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Parent et al., 2014; Roughgarden, 1972; Svanbäck & Persson, 2004). 
When a resource gradient exists, niche expansion can be achieved 
via genetic differentiation, phenotypic plasticity, or a combination 
of these processes (Bolnick & Ballare, 2020; Parent et al., 2014). 
The apparent segregation of resource use, based on our fatty acid 
analyses, despite a lack of major morphological, growth, and ge-
netic differentiation among the four dietary groups within the pi-
scivorous ecotype, suggests that behavioral plasticity is causing 
the observed patterns of dietary differentiation. Plasticity may 
promote diversification by expanding the range of phenotypes on 
which selection can act (Nonaka et al., 2015; Pfennig et al., 2010; 
West-Eberhard, 2003). Theoretical models suggest that exploiting 
a wide range of resources is either costly or limited by constraints, 
but plasticity is favored when (a) spatial and temporal variation 
of resources are important, (b) dispersal is high, (c) environmen-
tal cues are reliable, (d) genetic variation for plasticity is high, 
and (e) cost/limits of plasticity are low (Ackermann et  al.,  2004; 
Hendry, 2016).

The expression of plasticity in response to ecological conditions 
(e.g., habitat structure, prey diversity) can increase fitness. While 
most studies of diet variation focus on morphological differences 
among ecotypes in a population, diet variation can also arise from 
behavioral, biochemical, cognitive, and social-rank differences that 
cause functional ecology to be expressed at a finer scale than at the 
ecotype level (McGill et al., 2006; Svanbäck & Bolnick, 2005; Violle 
et  al.,  2012; Zhao et  al.,  2014). Indeed, behavioral plasticity likely 
has a temporal evolutionary advantage due to relatively reduced 
reliance on ecologically beneficial morphological adaptation (Smith 
et al., 2011; Svanbäck et al., 2009). The only detectable morphologi-
cal differences among piscivorous groups we identified in Great Bear 
Lake were associated with jaw lengths, snout-eye distance, and head 
length and depth, which are strongly related to foraging opportuni-
ties (Adams & Huntingford, 2002; Sušnik et al., 2006; Wainwright 
& Price,  2016). In general, head characteristics (i.e., shape and di-
mension) have been linked to foraging efficiency associated with 
particular prey, environment, or both (Adams & Huntingford, 2004; 
Bernatchez et al., 2016; Jonsson & Jonsson, 2001). Some morpholog-
ical characters likely express different degrees of plastic responses 
(adaptive or not), and thus may be expressed differently depending 
on the magnitude and time of exposure to heterogeneous environ-
ments (Hendry,  2016; Sharpe et  al.,  2008). For example, environ-
mental components (e.g., habitat structure) appear to have stronger 
and faster effects on linear characters (e.g., jaw length) than on body 
shape (Chavarie et al., 2013, 2015; Sharpe et al., 2008). More specif-
ically, diversification of fish via trophic specialization tends to reveal 
itself through differences in the trophic apparatus, particularly the 
mouth, which has direct contact with prey and substrate (Barlow 
and Munsey 1976; Maderbacher et al. 2008). Yet, the high trophic 
level of lake trout in Great Bear Lake, as top predators, could explain 
the small morphological differences detected herein because pisciv-
ory can limit diversification of feeding morphology in fishes (Collar 
et al., 2009; Svanbäck et al., 2015).

5  | CONCLUSION

Understanding ecological mechanisms of diversification is challeng-
ing (Ackermann et al., 2004). Divergence occurs along a continuum 
and in early stages, such as in postglacial lakes, morphological and 
dietary variation may not always be features that are related (Bolnick 
& Ballare, 2020; Bolnick et al., 2007). The debate around diversifica-
tion sequence (which diverges first, behavior, morphology, or ecol-
ogy?) highlights the mosaic nature of intraspecific variation (Hendry 
et al., 2009a). In this study, we asked whether among-individual diet 
variation could be occurring within an ecotype by examining the 
fine-scale trophic variation of an early stage of sympatric divergence 
of lake trout in Great Bear Lake (i.e., postglacial, representing ~567 
generations; Harris et al., 2015). Due to presumed homogeneity, few 
studies have investigated dietary patterns and groupings within an 
ecotype. Thus, this study provides evidence that among-individual 
resource specialization can occur within an ecotype. The co-exist-
ence of multiple generalist ecotypes in Great Bear Lake (Chavarie, 
Harford, et al., 2016), combined with the individual specialization 
shown here in the piscivorous generalist ecotype, expands our 
understanding of niche use and expansion, plasticity, individual 
specialization, and intraspecific diversity in evolutionarily young 
populations.

Rapid divergence within relatively few generations and 
among-individual diet variation have both been demonstrated to be 
strong drivers of population dynamics (Ashley et al., 2003; Bolnick 
& Ballare,  2020; Fussmann et  al.,  2007; Turcotte et  al.,  2011). In 
this study, the fine-grained trophic patterns shown within this eco-
type suggested that ecological drivers (i.e., spatial variation, habitat 
use, prey diversity, and abundance) could have important effects 
on plasticity expression in early stages of divergence. Theory and 
experiments have demonstrated that among-individual diet varia-
tion can increase stability within a system (Agashe, 2009). Using a 
broad resource spectrum has been identified as an adaptive strategy 
for fishes living in Arctic environments, where food availability is 
patchily distributed and ephemeral (Dill, 1983; Kassen, 2002; Smith 
et al., 2011). Thus, it is no surprise that the trophic individual spe-
cialization within an ecotype was discovered within a northern lake.
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